- неразложимая матрица
- unzerlegbare Matrix
Русско-немецкий финансово-экономическому словарь. - «РУССО». Ю.И. Куколев . 2001.
Русско-немецкий финансово-экономическому словарь. - «РУССО». Ю.И. Куколев . 2001.
Матрица переходных вероятностей — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Неразложимая цепь Маркова — Определение Пусть однородная цепь Маркова с дискретным временем. Состояние j называется достижимым из состояния i, если существует n = n(i,j) такое, что . Пишут … Википедия
СТОХАСТИЧЕСКАЯ МАТРИЦА — квадратная (возможно, бесконечная) матрица с неотрицательными элементами такими, что при любом i. Множество всех С. м. n го порядка представляет собой выпуклую оболочку п n С. м., составленных из нулей и единиц. Любую С. м. Рможно рассматривать… … Математическая энциклопедия
Цепь Маркова — Пример цепи с двумя состояниями Цепь Маркова последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, го … Википедия
Маркова цепь — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Марковские цепи — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Цепи Маркова — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Цепь (матем.) — Цепь Маркова последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова … Википедия
Достижимое состояние — Определение Пусть однородная цепь Маркова с дискретным временем. Состояние называется достижимым из состояния , если существует такое, что . Пишут … Википедия
Неразложимый класс — Определение Пусть однородная цепь Маркова с дискретным временем. Состояние j называется достижимым из состояния i, если существует n = n(i,j) такое, что . Пишут … Википедия
КОКСТЕРА ГРУППА — группа с отмеченной системой образующих допускающая определяющую систему соотношений где nii=1 (так что при любом i) и nij =nji при целое число или (в последнем случае соотношения между ri и rj нет). При этих условиях nij совпадает с порядком… … Математическая энциклопедия