неразложимая матрица

неразложимая матрица
unzerlegbare Matrix

Русско-немецкий финансово-экономическому словарь. - «РУССО». . 2001.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Матрица переходных вероятностей — Цепь Маркова  последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова …   Википедия

  • Неразложимая цепь Маркова — Определение Пусть однородная цепь Маркова с дискретным временем. Состояние j называется достижимым из состояния i, если существует n = n(i,j) такое, что . Пишут …   Википедия

  • СТОХАСТИЧЕСКАЯ МАТРИЦА — квадратная (возможно, бесконечная) матрица с неотрицательными элементами такими, что при любом i. Множество всех С. м. n го порядка представляет собой выпуклую оболочку п n С. м., составленных из нулей и единиц. Любую С. м. Рможно рассматривать… …   Математическая энциклопедия

  • Цепь Маркова — Пример цепи с двумя состояниями Цепь Маркова  последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, го …   Википедия

  • Маркова цепь — Цепь Маркова  последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова …   Википедия

  • Марковские цепи — Цепь Маркова  последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова …   Википедия

  • Цепи Маркова — Цепь Маркова  последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова …   Википедия

  • Цепь (матем.) — Цепь Маркова  последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова …   Википедия

  • Достижимое состояние — Определение Пусть   однородная цепь Маркова с дискретным временем. Состояние называется достижимым из состояния , если существует такое, что . Пишут …   Википедия

  • Неразложимый класс — Определение Пусть однородная цепь Маркова с дискретным временем. Состояние j называется достижимым из состояния i, если существует n = n(i,j) такое, что . Пишут …   Википедия

  • КОКСТЕРА ГРУППА — группа с отмеченной системой образующих допускающая определяющую систему соотношений где nii=1 (так что при любом i) и nij =nji при целое число или (в последнем случае соотношения между ri и rj нет). При этих условиях nij совпадает с порядком… …   Математическая энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”